528,223
个编辑
更改
无编辑摘要
==概述==
此外,还采用各种方法在体细胞之间转移遗传物质,以便观察[[外源基因]]在[[宿主]]细胞中的命运。1967年第一次以微生物转化方法将田鼠[[黑色素瘤]]细胞中的[[脱氧核糖核酸]](简称DNA)[[转化体]]外培养的非[[黑色素细胞]],使之成为能产生[[黑色素]]的细胞并增殖为克隆。20世纪70年代中又陆续发展出一些新技术,如制备出[[微细胞]]、[[脂质体]]和血影细胞等载体,把若干条染色体、染色体片段或长度不等的DNA[[分子]]引入[[受体]]细胞;或者通过[[显微注射]]把DNA分子直接注入受体细胞的核内,最后使这些引入的外源遗传物质在受体细胞中表达,从而大大推进了有关[[真核生物]]的基因结构和功能以及基因调控方面的研究。 植物的体细胞遗传学研究工作是在植物[[组织培养]]的基础上发展起来的。1934年国学者P.R.怀特以番茄根为材料建成了第一个能活跃生长的细胞无性繁殖系。以后的发展主要是关于[[培养物]]的[[组织分化]]和细胞融合两个方面。1956年R.A.米勒发现了[[激动素]],并且在含有一定浓度的激动素和[[生长素]]的培养基上使离体培养的组织发生器官分化。到目前为止,已有200多个种属植物组织培养中的细胞,相继被诱导分化为植株。 20世纪60年代初期,E.C.科金等应用[[纤维素酶]]分离植物[[原生质体]]获得成功。1972年S.卡尔森通过选择性筛选方法,获得由无性杂种[[细胞分化]]而成的[[双二倍体]]烟草植株。20世纪70年代以来,在对突变型细胞株的筛选、外源遗传物质导入和[[高等植物]]细胞中[[质粒]]的研究等方面也和动物体细胞遗传学一样得到了广泛地开展。特别是因为植物细胞具有全能性,能够由单个细胞长成植株,所以[[植物体]][[细胞遗传学]]研究除了在阐明植物的器官分化及[[形态建成]]等方面的价值外,也对育种工作具有重要意义。 ==研究方法==<b>细胞融合:</b>用灭活的病毒(如仙台病毒)或[[化学]]药物(如[[聚乙二醇]]、[[葡聚糖]])等处理细胞,可以促使细胞间发生融合而获得不同的细胞杂种。例如含有两个以上同种细胞核的同型核细胞、含有两个以上异种细胞核的异核细胞、含有由同种(或异种)细胞核融合成一个细胞核的种内(或种间)合核细胞、由不含细胞核的[[胞质体]]和完整细胞融合成的[[胞质杂种]]细胞以及由一种细胞的胞质体同另一种细胞的不含细胞质的[[核体]]融合成的[[重组]]细胞等。这些通过无性过程获得的细胞杂种除可以用以研究细胞核和细胞质对[[遗传信息]]的传递和表达所起的作用以及[[肿瘤发生]]的机理等,还可在植物中用来克服远缘杂交的困难。 <b>[[诱变]]:</b>用[[诱发突变]]可研究突变机制,并可为细胞融合提供选择性标记。已经建立的突变细胞株的性状包括营养缺陷、温度敏感、抗[[辐射]]、抗病毒和[[抗药]]物等,在植物中还可以通过体细胞诱变进行育种。 <b>融合细胞的选择方法:</b>细胞融合和[[基因突变]]同属稀有事件,所以必须具备特定的选择方法才能从大量没有融合的细胞中分离已经融合的细胞。在[[动物细胞]]中最早出现而且应用最广泛的是HAT选择法。在这一方法中,一个亲本细胞株为[[次黄嘌呤]]-[[鸟嘌呤]]-[[磷酸核糖转移酶]]缺陷型(HGPRT-);另一个亲本细胞株为[[胸腺嘧啶核苷]][[激酶]]缺陷型(TK-),在含有次黄嘌呤(H)、[[氨基蝶呤]](A)、[[胸腺]]嘧定[[核苷]](T)的HAT选择[[培养液]]中,上述亲本细胞都无法生存,只有融合以后的杂种细胞才能生长,因此可以有效地选择出杂种细胞。HAT选择法的原理是因为[[核酸]]合成有两条途径:①全合成途径,从一些小分子物质先合成嘌呤、[[嘧啶]],最后合成核酸;②应急途径,通过HGPRT(次黄嘌呤-鸟嘌呤-[[磷酸核糖]][[转换酶]])的催化作用把次黄嘌呤转化成[[次黄嘌呤核苷]]-[[磷酸]](IMP),通过TK(胸腺嘧啶核苷激酶)的[[催化]]把胸腺嘧啶核苷转化成脱氧胸腺嘧啶核苷-磷酸(dTMP),再进一步合成核酸。HAT培养液中的氨基蝶呤(A)能阻断全合成途径,所以两个亲本细胞都不能在HAT培养基中生长,而只有经细胞融合后得到的杂种细胞同时具有了HGPRT和TK的[[酶活性]]才能利用培养液中的次黄嘌呤(H)和胸腺嘧啶核苷(T)通过应急途径合成核酸(见图)。同理,任何其他方法,只要具备能使两种亲本细胞不能单独生存而只有融合以后才能生存的条件,都可以用来进行融合细胞的选择。 <b>排除或保留某一亲本染色体的方法:</b>对于都是长期[[传代培养]]的小鼠和[[大鼠]]细胞株的融合细胞来讲,在传代过程中被不断排斥的是大鼠的染色体;小鼠和人的融合细胞中被排斥的则是人的染色体。可是如果用人体细胞株的细胞与未经长期传代培养的小鼠细胞进行融合,则融合细胞首先排斥小鼠染色体。在植物中,培养九个月以后的大豆和烟草杂种细胞株中大豆染色体全部保留,烟草染色体则被排除了一半。 根据染色体上某些基因的特性,可以得到选择性地排除某一染色体的杂种细胞,例如在人的第5号染色体上有一个[[白喉毒素]][[受体蛋白]]基因,它使人体的杂种细胞对白喉[[毒素]]敏感。小鼠细胞中没有这一基因,所以能抗这种毒素。把人体和小鼠细胞的融合[[细胞培养]]在含有白喉毒素的培养液中,就能选择性地除去带有人体第5号染色体的杂种细胞。相反地也可以使融合细胞选择性地保留某一染色体。例如HGPRT基因位于人的X染色体上,所以能在HAT培养液中生长的融合细胞必定保留有人的X染色体。 <b>染色体基因或细胞核的转移:</b>把遗传物质引入某种生物的细胞是体细胞遗传学研究中的常用手段。外源遗传物质直接转化受体细胞的效率不高。把待转移的遗传物质用病毒、血影细胞、微细胞、脂质体等装载后则能提高引入受体细胞的效率。此外,也可以用极细的玻璃管把DNA直接注射到受体细胞的细胞核中。对于除去[[细胞壁]]后的植物细胞的原生质体来讲,也可以用上述种种方法引入DNA分子、[[噬菌体]]颗粒和[[细胞器]]等。除了转移染色体或染色体片段以外,有时需要转移整个细胞核,显微注射也是转移细胞核的常用方法。
==应用==
应用细胞融合、染色体鉴定、[[生化]]鉴定、免疫学鉴定等技术,已经建立了许多种基因定位方法,使人的基因定位的研究取得了快速的进展。例如,可利用中国[[仓鼠]]的细胞和人的体细胞融合的杂种细胞在传代培养过程中不断排斥人的染色体的现象来进行基因定位:如发现杂种细胞中人的9号染色体被排斥后便失去ABO[[血型抗原]],就可以确定ABO血型抗原基因是在9号染色体上等。研究肿瘤细胞融合形成的杂种细胞的致瘤性的变化可以为了解正常细胞的[[癌]]化和肿瘤细胞的逆转提供重要的线索。体细胞遗传学方法还可应用于[[肿瘤]](例如[[着色性干皮病]])发生机理的研究。另外,[[体细胞培养]]的方法还可应用于人类遗传性[[疾病]]的预防。