细胞化学
细胞化学是研究细胞的化学成分,及其在细胞活动中的变化和定位的学科。即在不破坏细胞形态结构的状况下,用生化的和物理的技术对各种组分做定量的分析,研究其动态变化,了解细胞代谢过程中各种细胞组分的作用。
细胞化学和组织化学的发展是分不开的,都是建立在细胞学、组织学以及生物化学的基础上。对细胞中的不同组分进行区别着色是细胞化学中最基础的工作。19世纪初叶,法国植物学家拉斯帕伊在研究禾本科植物的受精作用时,首次发现了淀粉的碘反应。此后他还建立了蛋白质的黄色反应,硫酸对于糖醛及蛋白质醛基反应等鉴定方法,因此他被认为是组织化学的创始人。
动物方面的组织化学和细胞化学的研究开展较晚。珀尔斯1867年用普鲁士兰显示细胞中的铁质,克文克1868年用黄色硫化胺溶液与细胞中的铁质化合成为黑色的硫化亚铁进行显示等方法,至今仍在应用。
1844年米利翁叙述了蛋白质反应,1853年霍夫曼指出,这个反应实际上是一个测定酪氨酸的方法,直至1888年,莱特格尔才开始利用米氏反应进行研究工作。1868年克莱布斯和1872年施特鲁韦分别显示出组织中酶的存在。他们指出树胶酊遇脓变成蓝色,这是确定组织中有过氧化物酶存在的首次报道。
1895年埃尔利希用“纳笛”反应首次显示细胞色素氧化酶。在异色性方面,甲基紫显示糖蛋白;天竺牡丹显示肥大细胞、唾液腺粘液;杂硫氧苯染料如亚甲蓝、硫堇、亚甲绿、甲苯胺蓝、天青蓝等对多糖的异色性染色亦相继被发现。
组织化学、细胞化学是在形态学和生物化学已有一定基础,苯胺染料技术发展到高峰的20世纪40年代才活跃起来的。本克1862年首次应用苯胺染料,这是组织学方法上的一次革命。1936年比利时的组织化学家利松的《动物组织化学》一书总结了组织化学的优缺点及发展的方向,把组织化学推向高潮。
当前,发展比较快的是定量细胞化学及定量组织化学,其目的是对细胞、细胞的组分和细胞外的产物,在其原位上和活的情况下进行定量化学分析,主要包括细胞光度学和原位定量测量两个方面。
细胞光度学是对细胞内某些化学物质的光学上的数量进行分析。最常用的方法有吸收量度法、荧光测定法、干涉量度法、反射量度法等。原位定量测量包括对切片厚度的测定,和对一个特定细胞化学反应区域的定量测量,以及放射自显影颗粒的计数和自动影像分析。自动影像分析是将光扫描系统和电子计算机连在一起进行定量分析,是定量细胞化学分析细胞内化学物质的最好方法。
用于细胞化学研究的染料可以是碱性的也可以是酸性的。酸性染料的生色基团是硝基和醌基;碱性染料的生色基团,包括着偶氮基吲胺基。染色的原理是基于在酸性染料中具有染色作用的阴离子和细胞内的碱性物质相结合,而碱性染料中的阳离子和细胞内的酸性物质相结合,所以酸性的细胞成分被碱性染料所染色,而碱性的细胞组分则被酸性染料染色。
例如显示蛋白质所用的米氏反应,其中硝基汞试剂作用于细胞中蛋白质侧链上的酪氨酸基,形成红色沉淀,在重氮基反应中氢氧化重氮与酪氨酸、色氨酸和组氨酸基反应形成有颜色的复合物。某些碳水化合物、酯类和DNA可用对其醛基有特异结合的试剂,如雪夫氏试剂。对核酸的染色方法与核苷酸磷酸、碳水化合物和嘌呤及嘧啶的三种成分的特性有关。
原位细胞化学所用的方法多是把单层的培养细胞,或把恒冷箱制备的新鲜而又薄的冰冻切片放在一定溶液内温育,使待测的物质或酶与染料或试剂发生专一性的反应,要求在原位上直接形成或变为不溶解的产物。有颜色的产物用光学显微镜,荧光产物则用荧光显微镜,吸收紫外光的物质用石英或反射显微镜,观察其在细胞结构上的分布。高电子密度产物可在电子显微镜下观察。
细胞化学对酶的研究一般是将薄的冰冻切片用适宜的底物温育,然后来测定酶在细胞内的位置。
组织化学家格莫里是最早进行这方面工作的科学家,他在测定碱性磷酸酶时是用甘油磷酸钠为底物,酶水解释放的磷酸根与底物溶液中的某些离子结合产生非溶性的金属盐,后又转变成金属铅,硫化铅,硫化钻及其他有色的化合物而得以显示出来。
利用物理技术研究各种细胞组分的方法主要有细胞光度法、荧光显微法、免疫细胞标记等。
细胞光度法是利用某些细胞组分会吸收不同的紫外光的特点进行研究区分,如核酸吸收光波是260纳米,蛋白质是280纳米,有些染色反应产物也有对可见光谱的特异吸收能力,都可用细胞光度计进行定量分析。
荧光显微是用通过检测细胞的自发荧光,或与荧光染料结合后产生的荧光来进行研究的方法。有些化合物受到紫外光照射时,能吸收辐照,并发出可见光,称自发荧光。有些化合物或细胞组织的成分,本身不发荧光,但能有选择的吸收不同的荧光性物质后,也能发荧光,称为次级荧光。
利用自发荧光或吸收荧光素可以用来鉴定细胞组织的物质,如维生素、类脂质、色素、致癌物,一些其他偶氮染料,奎宁、磺胺类、青霉素等药品,铀及其他金属衍化物等已日见重要,特别是肿瘤细胞的鉴定及抗体抗原的显示。
荧光鉴定的一个重要进展是发现用副甲醛固定冰冻干燥的组织与儿茶酚胺和吲哚胺产生冷凝作用,可相应地发散绿色和黄光荧光。利用此种荧光反应结合显微分光摄像法,已对交感神经节中小强荧光细胞内儿茶酚胺的性质进行了研究。
免疫细胞标记是用标记的抗体测定细胞内的抗原。应用此种技术能在光学和电子显微镜水平下找出抗原的位置。直接显示法主要步骤是先将组织骤冷,制成薄的切片,然后用偶联的抗血清染色。常用的是间接显示法,其原理是用荧光染料或一种酶标记的第二抗体来加强第一抗原—抗体反应。
在免疫电镜细胞化学的研究中,1974年麦克莱恩和纳卡内曾发现应用副甲醛混合液能使细胞内抗原更为稳定。1976年文德尔沙弗—克拉布等发现用未标记抗体酶方法研究病毒的抗原的超微结构定位要比应用铁蛋白标记抗体要成功的多,同时发现将组织块切成薄片后包埋、温育、染色,比将组织块包埋前温育、染色为优。
这种方法在细胞生物学中日益显示出重要性,许多细胞骨架蛋白,例如微管蛋白、肌动蛋白、调钙蛋白等均可用免疫细胞化学原理拄到它们在细胞内的位置,随着生化提纯的蛋白质的加多,免疫细胞化学还会得到更广泛的应用。
细胞化学未来的发展方向是如何将细胞超微结构与局部的化学分析联系起来,这将会对研究细胞成分方面起重要作用,还为自动影像分析技术提供更多的新染色方法,使细胞组分着色对比清晰,便于细胞精细结构进行定量测定。
定量细胞化学虽是细胞化学发展的主要方向,但仍有不少困难。有关仪器方面的问题已逐渐得到解决;但在固定细胞,反应的化学计算方法和反应产物的弥散等方面仍存在不少困难。判断任何定量细胞化学方法均有赖于用正确的模式系统,还要与其他方法所得的结果进行比较,方能满足今后研究的需要。
细胞化学的研究在农业、医药、医疗等学科和方面都有着广泛的应用,如癌细胞检测等。