胆碱
胆碱 [HOCH2CH2N(CH3)3]OH是一种强有机碱,是卵磷脂的组成成分,也存在于神经鞘磷脂之中,是机体可变甲基的一个来源而作用于合成甲基的产物,同时又是乙酰胆碱的前体.人体也能合成胆碱,所以不易造成缺乏病.
目录
物理性质
胆碱是季胺碱,为无色结晶,吸湿性很强;易溶于水和乙醇,不溶于氯仿、乙醚等非极性溶剂。
化学结构和性质
胆碱在化学上为(β-羟乙基)三甲基氨的氢氧化物,它是离子化合物,其分子结构式为:
HOCH2CH2N+(CH3)3。
胆碱呈无色味苦的水溶性白色浆液,有很强的吸湿性,暴露于空气中能很快吸水。胆碱容易与酸反应生成更稳定的结晶盐(如氯化胆碱),在强碱条件下也不稳定,但对热和储存相当稳定。由于胆碱耐热,因此在加工和烹调过程中的损失很少,干燥环境下即使长时间储存食物中胆碱含量也几乎没有变化。
胆碱是卵磷脂和鞘磷脂的重要组成部分,卵磷脂即是磷脂酰胆碱(phosphalidy chlines),广泛存在于动植物体内,在动物的脑、精液、肾上腺及细胞中含量尤多,以禽卵卵黄中的含量最为丰富,达干重的8%~10%。鞘磷脂(sphingomyelin)是神经醇磷脂的典型代表,在高等动物组织中含量最丰富,它由神经氨基醇、脂肪酸、磷脂及胆碱组成。
生理功能
在机体内胆碱的生理功能和磷脂的作用相互有密切的关系,胆碱的部分生理功能通过磷脂的形式来实现;而胆碱作为胞苷二磷酸胆碱辅酶的组成部分,在合成神经鞘磷脂与磷脂酰胆碱中起主要作用。
(一)促进脑发育和提高记忆能力
自然界已形成若干机制以保证生长发育中的动物获得足够数量的胆碱。胎盘可调节向胎儿的胆碱运输。羊水中胆碱浓度为母血中10倍。新生儿阶段大脑从血液中汲取胆碱的能力是极强的。实验观察,新生鼠大脑中具有一种活性极强的磷脂酰乙醇胺-N-甲基转移酶(该酶不存在于成年鼠大脑)。而且,在新生鼠大脑中,S-腺苷甲硫氨酸浓度为40~50nmol/g组织,这就使得新生鼠的磷脂酰乙醇胺-N-甲基转移酶维持高活性。此外,人类和大鼠乳汁可为新生儿提供大量胆碱,可以保证胎儿和新生儿获得胆碱的多重机制。
(二)保证信息传递
对胆碱磷酯介导信息传递的研究近年有很大进展。研究认为膜受体接受刺激可激活相应的磷脂酶而导致分解产物的形成。这些产物本身即是信号物分子,或者被特异酶作用而再转变成信号物分子。膜中的少量磷脂组成,包括磷脂酰基醇衍生物、胆碱磷酯,特别是磷脂酰胆碱和神经鞘磷脂,均为能够放大外部信号或通过产生抑制性第二信使而中止信号过程的生物活性分子。
在这些信号传递过程中,膜受体激活导致受体结构的改变并进而激活三磷酸乌苷结合蛋白(GTP-binding protein,G-蛋白)。G-蛋白的激活进一步使膜内磷脂酶C的激活。磷脂酶C为系列磷酸二酯酶,该系列酶可水解磷脂的甘油磷酸键,生成1,2-5n二脂酰甘油和一个亲水的可溶性(极性)头(基团)。磷脂酶C的作用促发了信息传递过程的下步活动,使蛋白激活酶(PKC)激活。磷脂水解的产物包括二脂酰甘油,其本身即是一种信使分子,又是脂质代谢的中介物。正常情况下,蛋白激活酶处于折叠状态使得一个内源性的“假性底物”区域被结合在酶的催化部位,从而抑制了其活性。二脂酰甘油使蛋白激活酶构象发生改变,导致其从铰链区发生扭曲,释放“假性底物”,开放催化部位。二脂酰甘油在膜上存在的时间是极为短暂的,因此当受体接受刺激后,蛋白激活酶的激活时间也极短,而在此极短时间内完成了信息传递。
(三)调控细胞凋亡
凋亡(apoptpsis)是细胞的一种受调控形式的自毁过程,存在于多种生理条件下,如正常的细胞更替,激素诱导的组织萎缩和胚胎发生。处于凋亡过程的细胞变现出染色体DNA破碎和形态特征的改变,如胞体骤减,胞核聚缩和破碎,包含围膜浓缩染色体碎片和完整细胞器的凋亡小体的形成。凋亡过程的另一特征性变化来自核酸内切酶的作用,即具有转录活性的核DNA(而非线粒体DNA)被水解成200bp(碱基对)的染色质碎片,从而在凝胶电脉中形成梯度变化。
DNA链的断裂时胆碱缺乏的早期表现,DNA损伤对凋亡细胞形态学变化有重要作用,将鼠肝细胞置于缺乏当胆碱的培养基中可使之凋亡,同时,胆碱缺乏对神经细胞也是一种潜在的凋亡诱导因素。
胆碱缺乏导致的凋亡是由于胆碱组分的缺乏造成的,还是由于甲基基团供应缺乏造成的呢?胆碱缺乏和甲基缺乏常被看作一回事,因为胆碱缺乏减少了甲基的供应。但是以甜菜碱、蛋氨酸、叶酸或维生素B12提供甲基并不能避免肝细胞由胆碱缺乏所诱导的凋亡,因此,可以看出胆碱对调控细胞凋亡具有其他甲基供体所不能替代的重要的特异性功能。
(四)构成生物膜的重要组成成分
胆碱在细胞膜结构和脂蛋白构成上是重要的。在生物膜中,磷脂排列成双分子层构成膜的基质。双分子层的每一个磷脂分子都可以自由地横移动,其结果使双分子层具有流动性、柔韧性、高电阴性及对高极性分子的不能透性。而脂蛋白则是包埋于磷脂基质中,可以从两侧表面嵌入或穿透整个双分子层。生物膜的这种液态镶嵌结构并不是固定不变的,而是处于动态的平衡之中。
(五)促进脂肪代谢
胆碱对脂肪有亲合力,可促进脂肪以磷脂形式由肝脏通过血液输送出去或改善脂肪酸本身在肝中的利用,并防止脂肪在肝脏里的异常积聚。如果没有胆碱,脂肪聚积在肝中出现脂肪肝,处于病态。临床上,应用胆碱治疗肝硬化、肝炎和其他肝疾病,效果良好。
(六)促进体内转甲基代谢
在机体内,能从一种化合物转移到另一种化合物上的甲基称为不稳定甲基,该过程称为酯转化过程。体内酯转化过程有重要的作用,诸如参与肌酸的合成对肌肉代谢很重要、肾上腺素之类激素的合成并可甲酯化某些物质使之从尿中排出。胆碱是不稳定甲基的一个主要来源,蛋氨酸、叶酸和维生素B12等也能提供不稳定甲基。因此,需在维生素B12和叶酸作为辅酶因子帮助下,胆碱在体内才能由丝氨酸和蛋氨酸合成而得。不稳定甲基源之间的某一种可代替或部分补充另一种的不足,蛋氨酸和维生素B12在某种情况下能替代机体中部分胆碱。
(七)降低血清胆固醇
随着年龄的增大,胆固醇在血管内沉积引起动脉硬化,最终诱发心血管疾病的出现。胆碱和磷脂具有良好的乳化特性,能阻止胆固醇在血管内壁的沉积并清除部分沉积物,同时改善脂肪的吸收与利用,因此具有预防心血管疾病的作用。
发现历史
胆碱是一种强有机碱,1849年首次从猪肝中被分离出,并与1862年首次定名,1866年被化学合成。此后一直认为胆碱为磷脂的组分,但直到1941年才由Devigneaud首先弄清它的生物合成途径。1940年Sura和Gyorgy Goldblatt根据他们各自的工作,报道了胆碱对大白鼠生长必不可少的特性,表明了它具有维生素特性。 胆碱是卵磷脂的关键组成成分,也存在于神经鞘磷脂之中,是机体可变的甲基的一个来源而作用于合成甲基的产物,同时又是一个乙酰胆碱的前体。
20世纪30年代已知胆碱为实验用的大鼠中必含的成分,尤其是其正常生长所必需的。虽然胆碱可以从食物中取得人类及动物所需要的数量,但很多动物体内不能合成胆碱,其中包括幼年动物。当不给于实验动物含有胆碱的食物或不给于合成胆碱所必需营养物质时,可以造成缺乏病,并引起肝与肾的损害。据此,比较多的营养学家还是把它列入维生素类之中。
人体机体也能合成胆碱,所以不易在实验中造成缺乏病。人类合成量的多少与需要量的多少现在还未能测知,临床上也发现人类的胆碱缺乏病。故在这一点上,胆碱不一定是人类必需的维生素,甚或可以说它不是人类的维生素。
胆碱现已成为人类食品中常用的添加剂。美国的《联邦法典》将胆碱列为“一般认为安全”(Generally recognized as safe)的产品;欧洲联盟1991年颁布的法规将胆碱列为允许添加于婴儿食品的产品。
生化反应
一般作用
胆碱和肌醇(另一种维生素B)一起合作来进行对脂肪与胆固醇的利用;
胆碱是少数能穿过“脑血管屏障”的物质之一。这个“屏障”保护脑部不受日常饮食的改变的影响。但胆碱可通过此“屏障”进入脑细胞,制造帮助记忆的化学物质。
效用
控制胆固醇的积蓄;
帮助传送刺激神经的信号,特别是为了记忆的形成而对大脑所发出的信号;
有防止年老记忆力衰退的功效(每天服用1~5g);
因为有促进肝脏机能的作用,可帮助人体的组织排除毒素和药物;
有镇定作用;有助于治疗老年痴呆症。
正常需要
建议每日取量还未确定。但是,成人一天的饮食中应含有500~900mg的胆碱;
缺乏症
可能引起肝硬化、肝脏脂肪的变性、动脉硬化,也可能是引起老年痴呆症(Alzheimer,s disease)的原因。
食物来源
富含胆碱的食物
蛋类、动物的脑、啤酒酵母、麦芽、大豆卵磷脂、存在各种食物中,特别是肝脏、花生、蔬菜中含量较高。
营养补品(supplement)
6个由大豆做成的卵磷脂胶囊中每个含有肌醇和胆碱各244mg。
普通的复合维生素B制剂补品中含有50mg的肌醇和胆碱。
一般每日取量是500~1000mg。
特殊用途
摄取胆碱时要和其他的B族维生素同时摄取;
容易烦躁、兴奋的人应增加胆碱的摄取量;
服用卵磷脂的人必须摄取已经“螯合作用”过的钙营养补品,以便保持磷和钙的平衡,因为胆碱似乎可以增加体内的磷;
可以试试看,在饮食中多摄取含胆碱的食物,可增进您的记忆;
如果您大量喝酒,那么请务必供给肝脏充足的胆碱以应付额外的工作。
富含胆碱的食物:蛋类、动物的脑、动物心脏与肝脏、绿叶蔬菜、啤酒酵母、麦芽、大豆卵磷脂
胆碱缺乏症
长期摄入缺乏胆碱膳食的主要结果可包括肝、肾、胰腺病变、记忆紊乱和生长障碍。
1、肝脏变化:大部分动物(除反刍动物外)胆碱缺乏导致肝脏功能异常,肝脏出现大量脂质(主要为甘油三酯)积累,最终充满整个肝细胞。
2、肾脏变化:胆碱缺乏也危害肾脏缩水功能。
3、诱发癌症:胆碱缺乏所造成的致癌过程首先造成基因损伤,然后是某些可以形成肿瘤的变异细胞株生存并增殖。
4、与膳食低胆碱有关的不育症、生长迟缓、骨质异常,造血障碍和高血压也均有报道。