MHC基因

来自中医百科
跳转至: 导航搜索

概述

20世纪初即已发现,在不同种属或同种不同系的动物个体间进行正常组织肿瘤移植会出现排斥,它是供者与受者组织不相容的反映。其后证明,排斥反应本质上是一种免疫反应,它是由组织表面的同种异型抗原诱导的。这种代表个体特异性同种抗原称为组织兼容性抗原(histocompatibility antigen)或移植抗原(transplantation antigen)。机体内与排斥反应有关的抗原系统多达20种以上,其中能引起强而迅速排斥反应者称为主要组织兼容性抗原,其编码基因是一组紧密连锁的基因群,称为主要组织兼容性复合物(major histocompatibility complex,MHC)。现已证明,控制机体免疫应答能力与调节功能的基因(immune uesponse gene,Ir gene )也存在于MHC内。因此,MHC不仅与移植排斥反应有关,也广泛参与免疫应答的诱导与调节。不同种属的哺乳类动物其MHC及编码的抗原系统有不同的命名,小鼠的主要组织相容性抗原系统称为H-2系统,人的则称为人白细胞抗原系统(human leucocyte antigen,HLA)。但它们的组成结构分布和功能等却很相似。小鼠由于具有繁殖快、易于饲养等特点成为进行MHC研究的最重要动物。迄今对人类MHC的认识在很大程度上也来自对小鼠MHC即H-2复合体的研究。

小鼠H-2基因复合体

H-2复合体的结构

本世纪30年代,Gorer在鉴定近交系小鼠血型抗原时曾发现4组红细胞抗原,命名为抗原Ⅰ、Ⅱ、Ⅲ和Ⅳ。其中抗原Ⅱ只存在于某些品系而不存在于另一些品系小鼠中。其后,Snell等用近交系小鼠中生长的肿瘤分别移植于其杂交子代,肿瘤只能在抗原Ⅱ阳性小鼠体内生长,在抗原Ⅱ阴性小鼠体内则被排斥,证明了抗原Ⅱ是一种组织兼容性抗原,故称小鼠的组织兼容性抗原为H-2(histocompatibility antigen-2,H-2)。以后,相继证明编码H-2抗原的基因定位于小鼠第17对染色体上,并证明是由多基因座组成,故称此基因群为主要组织相容性基因复合体。

这是一组紧密连锁的基因群,位于第17对染色体上的一个狭窄的区段内,它是由4个遗传区域(uegion)组成,即K区、I区、S区和D区。其中I区又可分为二个亚区(subrugion)即I-A和I-B亚区。在每区或亚区内至少包括一个基因座,如K区基因称为H-2K座。D区至少含有二个座,即H-2D座和H-2L座。I-A亚区含有Aα和Bβ二个座,I-E亚区含E-α和E-β二个座,S区含有6个座。

K和D区基因可编码H-2抗原系,I区基因编码的分子称为I区相关抗原或Ia抗原系(I-region associated antigen,Ia)。S区基因可分别编码补体成分(C4B因子等)、性限制蛋白(sex-Iimited protem,SIP)以及TNF等因子(图5-1)

图5-1小鼠H-2复合体结构示意图

H-2复合体的功能

Kiein于1981年按其功能将MHC基因座分为4类,即Ⅰ类座包括K、D和L座,其编码的分子称为Ⅰ类分子,即K、D和L分子。Ⅱ类座其编码的分子称为Ⅱ类分子即Ia抗原。Ⅲ类座其编码的分子称为Ⅲ类分子(包括血清因子、补体分子及TNF等)。Ⅳ类座位于D座右侧,是否属于H-2复合体尚未确定,但与H-2连锁,它包括Tla座和Qa座,其编码的分子称为Ⅳ类分子(Tla分子和Qa分子)。

1.Ⅰ类基因(H-2K,H-2D基因) Snell于50年代偶然发现H-2基因座不是由一个基因组成,他观察到二个品系小鼠(k/k和d/d)杂交的子代(F1:k/d)鼠能接受第三个品系小鼠,(a/a)的肿瘤移植,他对这种意外结果解释为H-2基因座含有二个基因(K/D),a/a品系小鼠具有来自k/k小鼠的一个基因(K)和来自d/d小鼠的另一个基因(D)。这种组合衍生自二个染色体上的相应位置分别称为K座(K locus)和D座(DLocus),二个座分别编码不同的H-2抗原(K分子和T分子)即Ⅰ类分子。

在不同的品系中,K和D分子可能具有不同的抗原特异性称之为特有抗原(prviate antigen)。在K和D分子之间也存在一引些共同的抗原特异性称之为共有抗原(public antigen)。不同的抗原特异性可用编码抗原基因座名称和按检出顺序标明之,如K33、D2等。

在一条染色体上K和D座存在的基因总合称为H-2的单体型(haplotype),不同的单体型可用小写字母表示之。如C57BL品系小鼠的H-2单体型为H-2b,它的二个基因座编码的抗原特异性为K33和D2。

2.Ⅱ类基因(免疫应答基因)近年来对免疫应答的遗传控制进行了系统研究,证明运动对许多抗原的免疫应答是受常染色体显性基因控制,称此基因为免疫应答基因(immune response gene,Ir基因)。McDevitt等研究了小鼠对人工合成多肽体抗原的免疫应答,首先证明了Ir基因与H-2复合体呈连锁关系,定位于H-2K和H-2D座之间,因与免疫应答相关,故称此区段为I区。

通过不同品系小鼠之间交配获得一种具有相同K和D基因的特殊重组体。有这种重组体小鼠进行相互免疫,惊奇地发现在K和D基因之间的染色体区段也控制细胞膜表面的同种异型抗原,将这种新发现的同种异型抗原称为I区相关抗原,即Ia抗原。这种抗原与K和D分子不同,它主要存在于B细胞、巨噬细胞、树突状细胞以及活化的T细胞上,而在其它组织上均未能发现Ia抗原的存在。其后证明Ia分子与多肽抗原呈递相关。

3.Ⅲ类类基(系指H-2S区的基因)此区含有6个座,包括C4、C2、Bf、Slp、TNF等基因。分别编码C4分子、C2分子、补体B因子,性限制蛋白及肿瘤坏死因子(TNF)等。

MHC分子

虽然不同个体、不同种属的MHC结构不同,但其编码的分子在化学结构、组织分布及功能上均十分相近,可以分成三类:即Ⅰ类分子,Ⅱ类分子和Ⅲ类分子;其编码基因也相应地分成三类。Ⅰ类和Ⅱ类分子是结构相似的细胞膜表面糖蛋白,除作为移植抗原外,还与抗原递呈及某些疾病相关。Ⅲ类分子包括C2、C4、B因子和肿瘤坏死因子等多种可溶性蛋白质,相互间差别很大,与Ⅰ类和Ⅱ类分子在结构和功能上相关性很小,本章不予讨论。

MHCⅠ类分子

Ⅰ类分子的结构

人类的类分子由HLA的A、B、C、E、F、G、H、K和L等基因编码;但因后几类基因的性质和作用尚不清楚,所以目前所称的类分子主要指HLA-A、B、C位点的抗原。

Ⅰ类分子是由非共价键连接的两条肽链组成的糖蛋白;其中一条称为重链或α链,另一条为轻链或称为β2微球蛋白(β2m)。α链的分子量为44kD,结构呈多态性;其羧基端穿过细胞膜,伸入胞浆之中,氨基端则游离于细胞膜外(图6-3)。α链的膜外区肽段折叠形成三个功能区,分别称为α1、α2、和α3区;每个功能区约含90个氨基酸残基,其结构与Ig相似;α1和α2区的氨基酸顺序变化较大,决定着Ⅰ类分子的多态性。β2m不MHC基因编码,而是第15号染色体上单个基因编码的产物,分子量12kD。其结构与Ig恒定区(CH3)有较大同源性,属于Ig超族成员,没有同种异型决定簇,但具有种属特异性。β2m不穿过细胞膜,也不与细胞膜接触,而是以非共价形式附着于α3的功能区上。虽然β2m不直接参与Ⅰ类分子的抗原递呈过程,但是它能促进内质网中新合成的Ⅰ类分子向细胞表面运输,并对稳定Ⅰ类分子的结构具有一定作用。

图6-3HLA分子结构示意图

利用X线结晶衍射图分析,阐明了Ⅰ类分子的三维结构:α1和α2功能区共同构成了槽形的抗原肽段结合部位,来自α1和α2的8条反向平行的β片层结构组成槽的底部;而α1和α2功能区的其余部分各自形成一个α-螺旋,两条螺旋相互毗邻,相互平行,在分子的远端共同构成槽的侧壁;槽的底部和侧壁体现Ⅰ类分子的多肽性,也决定了Ⅰ类分子与抗原结合的特异性;α3功能区具有与CD8分子结合的空间构型(图6-4)。

图6-4HLAⅠ类分子多肽折迭立体结构示意图

A:侧面观;B:上面观

Ⅰ类分子与抗原的结合有一定的选择性,但是没有抗体和TCR与抗原结合的特异性高。Ⅰ类分子的抗原结合槽能够容纳8~10个氨基酸长度的抗原片段,其抗原结合点主要与氨基酸顺序相对恒定的抗原肽段的骨干结合,而将抗原肽段上多变的氨基酸侧链处于游离状态;这些侧链却能与TCR和抗体结合。每个细胞表面可以表达约106个Ⅰ类分子,每个Ⅰ类分子都能与相当各类的抗原肽段结合。因此每个细胞都具有同时递呈许多不同抗原的潜力,从而保证一个正常的个体对绝大多数抗原发生Ⅰ类限制性的免疫应答。

Ⅰ类分子的分布和功能

MHCⅠ类分子分布于几乎所有有核细胞表面,但不同组织细胞的表达水平差异很大:淋巴细胞表面Ⅰ类抗原的密度最高,肾、肝、肺、心及皮肤次之,肌肉神经组织内分泌细胞上抗原最少,而成熟红细胞、胎盘滋养层细胞上未能检出,血清、尿液中及初乳体液中也有可溶性形式存在的Ⅰ类抗原。干扰素、肿瘤坏死因子在体内外均可增强各种细胞对Ⅰ类分子的表达。

Ⅰ类分子的重要生理功能是对CD8+T细胞的抗原识别功能起限制性作用,也就是参与向CD8+T细胞递呈抗原的过程。CD8+T细胞只能识别与相同Ⅰ类分子结合的抗原(多为内源性的细胞抗原,如病毒感染的细胞和肿瘤细胞等),这种现象称为MHC限制性。例如,当病毒感染了某个细胞,病毒抗原可被分解成一些短肽片段,后者与在内质网中合成的Ⅰ类分子结合后表达于细胞表面,才能被CD8+T细胞识别。Ⅰ类分子主要介导Tc细胞的细胞毒作用,也是重要的移植抗原。

MHCⅡ类分子

Ⅱ类分子的结构

人类的MHCⅡ类分子由HLA复合体中的D区基因编码,已经明确的Ⅱ类分子包括HLA-DR、DP和DQ抗原。Ⅱ类分子亦是由非共价连接的两条多肽链组成,分别称为α链和β链;与Ⅰ类分子不同的是,两条链均由HLA基因编码。α链的分子量约34kD,β链约29kD;两条肽链均嵌入细胞膜,伸入胞质之中;其膜外区各有两个Ig样的功能区(图6-3),分别称为α1、α2、β1和β2功能区。

X线结晶衍射图显示,Ⅱ类分子的α1和β1功能区共同形成一个与Ⅰ类分子相似的槽型结构的多肽结合区。1和β1各有一个螺旋,形成槽的两侧壁,其余部分形成片层,构成槽的底部。Ⅱ类分子的多态性也体现在多肽结合槽的侧壁和底部,所以其空间构型依编码基因的不同而异。类分子的抗原结合特性亦与Ⅰ类分子一样,特异性不强,每个分子可能与多种肽片结合;但与Ⅰ类分子不同的是,Ⅱ类分子肽结合槽的两端呈开放状(Ⅰ类分子的结合槽两端呈封闭状),能够容纳较长(10~18个氨基酸残基)的肽段。

Ⅱ类分子的分布和功能

Ⅱ类分子的分布比较局限,主要表达于B细胞、单核-巨噬细胞和树突状细胞等抗原递呈细胞上,精子细胞和某些活化的T细胞上也有Ⅱ类分子。一些在正常情况下不表达Ⅱ类分子的细胞,在免疫应答过程中亦可受细胞因子的诱导表达Ⅱ类分子,因此Ⅱ类分子的表达被看成是抗原递呈能力的标志。IL-1、IL-2和干扰素在体内外均能增强Ⅱ类分子的表达。有些组织在病理条件下也可表达一些类抗原,如胰岛β细胞、甲状腺细胞等。

Ⅱ类分子的功能主要是在免疫应答的始动阶段将经过处理的抗原片段递呈给CD4+T细胞。正如CD8+T细胞只能识别与MHCⅠ类分子结合的抗原片段一样,CD4+T细胞只能识别Ⅱ类分子结合的抗原片段。Ⅱ类分子主要参与外源性抗原的递呈,在一些条件下也可递内源性抗原。在组织或器官移植过程中,Ⅱ类分子是引起移植排斥反应的重要靶抗原,包括引起宿主抗移植物反应(HVGR)和移植物抗宿主反应(GVHR)。在免疫应答中,Ⅱ类抗原主要是协调免疫细胞间的相互作用,调控体液免疫和细胞免疫应答。

人类HLA基因复合体

对人主要组织兼容性抗原系统及其基因复合体的认识比小鼠约晚10年,法国学者Dausset在1958年首先发现,肾移植后出现排斥反应的患者以及多次输血的患者血清中含有能与供者白细胞发生反应的抗体。后者所针对的抗原即人类主要组织相溶性抗原。由于该抗原首先在白细胞表面被发现且含量最高,而且白细胞抗原(human leucocyte antigen,HAL);人类MHC,即编码HLA的基因群自然数为HAL复合体。

HLA复合体定位及结构

HLA复合体位于人第6号染色体的短臂上。该区DNA片段长度约3.5~4.0×千个碱基对,占人体整个基因组的1/3000。图5-2显示HLA复合体结构。HLA复合体共有数十个座,传统上按其产物的结构、表达方式、组织分布与功能可将这些基因座分为三类。

图5-2 人类HLA复合体结构示意图

1.HLA-Ⅰ类基因在Ⅰ基因区内存在多达31个有关的Ⅰ类基因座,其中HLA-A、HLA-B和HLA-C为经典的HLA-Ⅰ类基因,其它基因的产物分布有限,且其功能不明,另外还有许多伪基因.

2.HLA-Ⅱ类基因 HLA-Ⅱ类基因区包括近30个基因座,其中经典的Ⅱ类基因一般指DR、DP和DQ,它们编码的产物均为双肽链(α、β)分子。近年来,陆续发现了一些位于Ⅱ类基因区的新基因座,其中某些基因的产物与内源性抗原的处理与呈递有关。

3.HLA-Ⅲ类基因 HLA-Ⅲ类基因区域至少已发现36个基因座,其中C2、C4、Bf座编码相应的补体成分,另外还有21羧化酶基因(CYP21A、B)肿瘤坏死因子基因(TNFA、B)以及热休克蛋白70(heat shock protein70,HSP70)基因。补体C4由二个不同的基因(C4A与C4B)编码。HLA-Ⅲ类基因区结构见图5-3。

图5-3 HLA-Ⅲ基因区结构示意图

HLA等位基因及编码产物的命名

按WHO-HLA命名委员会发布的资料,仅经典的HLA-Ⅰ、Ⅱ类座(A、B、C、DR、DQ、DP)等位基因即达279个。表5-1列出了至1991年11月已识别的HLA特异性。根据该委员会制定的命名原则,凡确定新的HLA抗原特异性都要明确其DNA序列。此外,下列几种情况在HLA特异性编号后加W(work shop)标记。

表5-1 已识别的HLA特异性(1991)

A B C D DR DQ DF
A1 B5 B51(5) Cw1 Dw1 DR1 DQ1 DPw1
A2 B7 B5102 Cw2 Dw2 DR103 DQ2 DPw2
A210(2) B703 B5103(7) Cw3 Dw3 DR2 DQ3 DPw3
A3 B8 B52(5) Cw4 Dw4 DR3 DQ4 DPw4
A9 B12 B53 Cw5 Dw5 DR4 DQ5(1) DPw6
A10 B13 B54(22) Cw6 Dw6 DR5 DQ6(1)  
A11 B14 B55(22) Cw7 Dw7 DR6 DQ7  
A19 B15 B54(22) Cw8 Dw8 DR7 DQ18(3)  
A23(9) B16 B57(17) Cw9(w3) Dw10 DR8 DQ19(3)  
A24(9) B17 B54(17) Cw1(w3) Dw11(w7) DR9    
A2403(9) B18 B59   Dw12 DR10    
A25(10) B21 B60(40)   Dw13 DR11(5)    
A26(10) B22 B61(40)   Dw14 DR12(5)    
A28 B27 B62(15)   Dw15 DR13(5)    
A29(19) B35 B63(15)   Dw16 DR13(6)    
A30(19) B37B64k(14)   Dw17(w7) DR14(6)    
A31(19) B38(16 B65(14)   Dw18(w6) DR1403    
A32(19) B39(16) B67   Dw19(w6) DR1404    
A33(19) B40 B70   Dw20 DR15(2)    
A34(10) B4005(21) B71(70)   Dw21 DR16(2)    
A36 B41 B72(70)   Dw22 DR17(3)    
A43 B42 B73   Dw23 DR18(3)    
A66(10) B44(12) B75(15)     DR51    
A68(28) B45(12) B76(15)   Dw24      
A69(28) B46 B77(15)   Dw25 DR52    
B47  B7801
B48
B49(21) Bw4
B50(21) Bw6

①Bw4和Bw6作为表位以其它B座等位基因个区别;②C座的特异性加w,以与补体相区分;③由经典细胞学分型方法鉴定D和DP特异性加W。

HLA复合机遗传特征

HLA复合体具备某些有别于其它真核基因系统的特征。

1.单体型遗传方式 HLA复合体是一组紧密连锁的基因群。这些连锁在一条染色体上的等位基因很少发生同源染色体间的交换,构成一个单体型(haplotype)。在遗传过程中,HLA单体型作为一个完整的遗传单位由亲代传给子代。有必要区分HLA表型、基因型与单体型这三个概念。某一个体HLA抗原特异性型别称为表型(phenotype);HLA基因在体细胞两条染色体上的组合称为基因型(genotype);HLA基因在同一条染色体上的组合称为单体型(haplotype)(表5-2)。

受检者

A1 A2

B8 B12

A1 A1

B8 B12

A1 A1

B8 B8

表型 HLA-A1、2:B8、12 HLA-A1:B8、12 HLA-A1、B8
基因型 HLA-A1、A2

HLA-B8、B12

HLA-A1、A1

HLA-B8、B12

HLA-A1、A1

HLA-B8、B8

单体型 HLA-A1、B8/A2、B12 HLA-A1、B8/A1、B12 HLA-A1、B8/A1、B8

二倍体(diploid)生物的每一细胞均有两个同源染色体组,分别来自父母双方。故子女的HLA单体型也是一个来自父方,一个来自母方。在同胞之间比较HLA单体型型别只会出现下列三种可能性:二个单体型完全相同或完全不同的机率各占25%;有一个单体型相同的机率占50%。至于亲代与子代之间则必然有一个单体型相同,也只能有一个单体型相同(图5-40。这一遗传特点在器官移植供者的选择以及法医的亲子鉴定中得到了应用。

图5-4 HLA 单体型遗传示意图

注:a、b、c、d代表单体型

A1、B8、A2、B35等代表HLA基因座等位基因

2.多态性现象 多态性(polymorphism)是指在一随机婚配的群体中,染色体同一基因座有两种以上基因型,即可能编码二种以上的产物。HLA复合体是迄今已知人体最复杂的基因复合体,有高度的多态性。HLA的多态性现象乃由于下列原因所致:①复等位基因(multiple alleles):位于一对同源染色体上对应位置的一对基因称为等位基因(allele);由于群体中的突变,同一座的基因系列称为复等位基因。前已述及,HLA复合体的每一座均存在为数众多的复等位基因,这是HLA高度多态性的最主要原因。由于各个座位基因是随机组合的,故人群中的基因型可达108之多。②共显性(codominance);一对等位基因同为显性称为共显性。HLA复合体中每一个等位基因均为共显性,从而大大增加了人群中HLA表型的多样性,达到107数量级。因此,除了同卵双生外,无关个体间HLA型别全相同的可能性极小。

HLA的高度多态性显示了遗传背景的多样性,这可能是高等动物抵御不利环境因素的一种适应性表现,从而维持种属的生存与延续具有重要的生物意义,但也对组织移植过程中寻找配型合的供体带来很大的困难。

3.连锁不平衡 HLA复合体各等位基因均有其各自的基因频率。基因频率是指某一特定等位基因与该基因座中全部等位基因总和的比例。随机婚配的群体中,在无新的突变和自然选择的情况下,基因频率可以代代维持不变,由于HLA复合体和各基因座是紧密连锁的,若各座的等位基因随机组合构成单体型,则某一单体型型别的出现频率应等于该单体型各基因比其它基因能更多或更少地连锁在起,从而出现连锁不平衡(linkage disepuilibrium)。例如,在北欧白人中HLA-A1和HLA-B8频率分别为0.17和0.11。若随机组合,则单体型A1-B8的预期频率为0.17×0.11=0.019。但实际所测行的A1-B8单体型频率是0.088故A1-B8处于连锁不平衡,实测频率与预期频率间的差值(△0.088-0.19=0.069)为连锁不平衡参数。在HLA复合体中已发现有50对以上等位基因显示连锁不平衡。产生连锁不平衡的机制尚不清楚。

MHC在医学上的意义

MHC与器官移植

前已述及,通过移植排斥的研究发现了MHC,所以MHC的意义首先与器官移植相关。Ⅰ类和Ⅱ类分子是引起同种异体移植排斥反应的主要抗原,供者与受者MHC的相似程度直接反映两者的兼容性;供-受者间的MHC相似性越高,移植成功的可能性越大。同卵双胎多胎兄弟姊妹之间进行移植时几乎不发生排斥反应;亲子之间有一条HLA单倍型相同,移植成功的可能性也较大;而在无任何亲源关系的个体之间进行器官移植时存活率要低得多。为了降低移植排斥反应,延长移植物的存活时间,移植前的重要工作就是通过HLA检测的方法进行组织配型,选择HLA抗原与受者尽量相同的供者;在移植后发生排斥反应时进行恰当的免疫抑制(详见第二十八章)。

MHC与免疫应答

1.免疫调控作用动物实验证明,不同品质的小鼠对同一抗原的应答能力大不相同:甲小鼠可产生抗体应答和细胞性应答,乙小鼠完无应答,两者杂交的F1有应答能力。这说明对某抗原的应答能力受遗传调控,Benacerraf将这种控制基因称免疫应答基因(immuneresponsegene,Ir基因);Ir基因的编码产物称为免疫应答抗原(immuneresponseassociatedantigen,Ia抗原);后来发现实际上就是MHCⅡ类基因及其抗原。Ⅱ类分子调控免疫应答的机制尚未清楚,可能是不同Ⅱ类分子与抗原结合的部位不同,因此递呈给TH细胞的抗原表位也不相同。

2.MHC限定性识别当抗原递呈向免疫活性细胞递呈抗原时,免疫活性细胞在识别特异性抗原的同时,必须识别递呈细胞的MHC抗原,这种机制称为MHC限定性(MHCrestriction)。CD4+T细胞必须识别Ⅱ类分子的特异性,CD8+T细胞必须识别Ⅰ类分子的特异性;MHC分子对抗原识别的机制已如前述,而识别的后果见第七章。

MHC与疾病

近20年来,已发现50余种人类疾病与HLA的一种或数种抗原相关,例如某些传染病自身免疫病强直性脊柱炎就是其中一个典型代表。在美国白人中,90%的强直性脊柱炎患者为HLA-B27,而正常人HLA-B27仅为9%,表明HLA-B27与强直性脊柱炎的发生呈高度相关。需要指出的是,这种“相关性”只是一种统计学的概念,并不表明两者之间有绝对的因果关系,因为除了HLA之外,其它基因及许多未知的环境因素都可能影响疾病的发生。HLA与某疾病的相关程度常用相对危险性(relativerisk,RR)表示,这是带有某种HLA抗原的人群发生某种疾病的频率与不带该抗原的人群发生某病频率的比值,其公式为:

RR=患者(Ag+/Ag-)/对照(Ag+/Ag-)

RR数值越大,表示某病与该抗原的相关性越强。一般地说,RR值大于3就表示相关性较强;但是如果某抗原在患者中出现的频率低于20%,即使RR值很大,也无较大意义。表6-2列出了几种疾病与HLA的RR数值。

表6-2HLA与某些疾病的相对危险性

疾病 HLA RR
霍奇金病 A1 1.4
特发性血色素沉着症 A3 8.2
先天肾上腺皮质增生 B47 15.4
强直性脊柱炎 B27 87.4
急性前葡萄腺炎 B27 10.4
亚急性甲状腺炎 B35 13.7
银屑病牛皮癣 Cw6 13.3
疱疹性皮 DR3 15.4
乳糜泻 DR3 10.3
特发性阿狄森病 DR3 6.3
突眼性甲状腺肿 DR3 3.7
胰岛素依赖型糖尿病 DR3 3.3
  DR4 6.4
重症肌无力 DR3 2.5
  D8 2.7
系统性红斑狼疮 DR3 5.8
多发性硬化 DR2 4.1
类风湿性关节炎 DR4 4.2
天疱疮 DR4 14.4
慢性甲状腺炎(桥本病) DR5 3.2
恶性贫血 DR5 5.4

MHC在HLA相关疾病中的作用机制目前尚不十分清楚,抗原决定簇选择(determinantselection)学说部分地解释了MHC的作用:①某些自身抗原的抗原片段与某个或几个特定HLA抗原的结合力比与其它HLA分子的结合力高得多,因此带有该特异性HLA分子的个体较易针对此抗原产生MHC限制性的免疫应答,引起自身免疫病;②某些HLA分子与病原体的某些抗原相同(共同抗原),不能有效地产生对该病原体的免疫应答,导致机体对该病原体所致的感染性疾病的易感性增强。虽然决定族选择学说还未得到证实,但是许多动物实验结果均支持这一学说。

MHC与法医学

HLA是体内最复杂的多态性基因系统,其表现型数以亿计,两个无血缘关系的个体很难具有完全相同的HLA,而且HLA终身不变。因此HLA检测至少具有两方面的意义:①由于HLA具有单倍型遗传的特点,每个子代均从其父母各得到一个单倍型,因此可用于亲子关系鉴定。②如用分子生物学方法,尚可对极少量的陈旧性标本进行检测,在法医学上可用于凶犯身份鉴定和死者身份鉴定。

MHC与人类学研究

不同民族的种族起源等人类学研究可从多方面进行,如历史、文化、语言、体质和基因等,其中唯基因受外界环境的影响最小,故其意义最大。因为HLA的基因连锁不平衡,某些基因或单倍型在不同种族或地区人群的频率分布有明显差异,故在人类学研究中可为探讨人类的源流和迁移提供有用的资料。


方剂-fangji-info-icon-logo.png
这是一篇与方剂相关的条目。推荐您访问中医智库,查看权威MHC基因信息。
古籍-guji-info-icon-logo.png
这是一篇与医籍相关的条目。推荐您访问中医智库,阅读《MHC基因》经典原文。